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Single-file diffusion of multiple strongly interacting particles in a one-dimensional pore is described within
a general analytical framework. The theory accounts for nonequilibrium conditions, explicit particle-particle
interactions, external potential acting on the particles and the fluctuations of the number of particles due to their
exchange with external equilibrium reservoirs. It is shown that the problem can be reduced to a closed
hierarchical set of partial differential equations of increasing dimensionality, which can be solved numerically.
Our framework allows computing any macroscopic characteristic of multiparticle diffusion in the pore. It is
shown that the pore occupancy probabilities and the current are rational functions of external concentrations in
the steady state. The theory is tested on a simplified model of the narrow rigid pore inspired by the selectivity
filter of biological ion channel. Perspectives and limitations of the theory are discussed.
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I. INTRODUCTION

The narrow nanoscale pores, which conduct ions or other
small molecules, constitute a significant challenge for physi-
cal modeling. Such pores exhibit a range of unique proper-
ties, which are never observed in macroscopic pores or bulk
liquids. Particularly, the particles in very narrow nanoscale
pores cannot pass by each other �single-file motion�. The
pore can also be long enough to accommodate more than one
particle at the same time. The examples of such nanopores,
which are very important for practical applications, are the
ion channels of biological membranes �1–3� and carbon
nanotubes �4,5�. The ion channels span the membranes and
connect two solutions with very different electrochemical
potentials of the permeating ions. Thus they function in
strongly nonequilibrium conditions. The same is true for pos-
sible applications of the carbon nanotubes as transport chan-
nels or nanopipettes. The macroscopic flux of the permeating
particles through these objects is of great importance for
practical applications.

Despite the fact that the narrow pores with multiple occu-
pancy are known for many years, there is no universally
accepted dedicated physical theory of these objects. Narrow
pores are routinely studied by molecular dynamics �MD�
�6–8� or Brownian dynamics �BD� �7,9–11� simulations. In
these approaches the motion equations of individual particles
in the pore and in the adjacent regions of solutions are solved
numerically and the properties of the channel are obtained as
time averages over simulated trajectories. This approach is
very effective in revealing fine details of interactions inside
the channel and provided invaluable insight into the func-
tioning of the biological ion channels. Despite current limi-
tations imposed by the computer power and certain method-
ological issues successful attempts are made to predict the
current through the channels using MD �12� and BD �7,11�.
It is obvious that these limitations would be eventually elimi-
nated by rapid advance in computer hardware and simulation
software.

However, it is often desirable to have more general theo-
retical picture of the physical processes in the narrow pores

with multiple occupancy. Although the general theory is un-
able to describe particular molecular system at the same level
of details as atomistic simulations, it can complement them
in many important aspects:

�1� the theory is independent on atomistic design of par-
ticular object. Thus it can describe universal principles of the
diffusion in narrow pores in any natural or artificial system.

�2� The theory provides conceptual overview of possible
phenomena in the pores, which may or may not be observed
in particular system in particular conditions;

�3� the necessary conditions for particular type of behav-
ior could be formulated;

�4� very wide range of pore parameters and external con-
ditions could be studied;

�5� macroscopic characteristics of the pore �such as par-
ticle density, current or distribution of occupancy states�
could be computed for the objects, which are either not suit-
able for atomistic simulations or does not justify such time-
consuming modeling; and

�6� the theory could be used as an “ideal reference” for
simulations or experimental studies. Deviations of the ex-
perimental data from the predictions of the theory could be
more valuable for analysis than the experimental data them-
selves.

It is necessary to note that any general theory could not be
immediately applied to real complicated molecular systems.
However, the parameters obtained from real systems could
be used to obtain an idealized and simplified model of par-
ticular object.

Several approaches to analytical description of the narrow
pores exist. The discrete description is utilized in the so-
called “rate theories” �3,13,14�, which are very popular and
widespread in the ion channel science. In this approach mul-
tiple ions can reside in the binding sites inside the channel
and move by jumping over the energy barriers between the
sites. The rate theories can predict many characteristics of
the real channels, but possess several drawbacks. These mod-
els are usually phenomenological. The heights of the energy
barriers between the binding sites are often hard to estimate
especially if the number of sites is large. The continuous
diffusion of ions in the realistic energy profiles cannot be
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described if the profiles lack pronounced binding sites or
possess wide and deep energy wells containing several ions.
In the majority of rate theories the interaction between the
ions is treated at the level of so-called “kinematics interac-
tion,” which means that no more than one ion can occupy the
binding site. Such description is usually oversimplified and
becomes inadequate if the ions interact strongly at short dis-
tances inside deep and wide energy well.

The continuous description is used in the classical theo-
ries of the ion diffusion based on the Poisson-Boltzmann or
the Poisson-Nernst-Planck equations. The discrete nature of
the permeating particles is averaged out in these theories and
the macroscopic characteristics of the system are considered.
Although these theories are often successful for large mac-
roscopic pores, they are unable to predict many properties of
the very narrow pores which contain several ions �11,15,16�.
Recently these theories were revised in the case of confined
geometries. In the work �17� the diffusion of particles in the
narrow pore is reduced to the hierarchical system of the
Poisson-Nernst-Planck-like equations. This theory is build in
terms of effective concentrations and leads to the infinite
hierarchy of multiparticle equations, which resembles the
Bogolyubov-Born-Green-Kirkwood-Yvon �BBGKY� chain
of equations. Although this theory is quite general and ro-
bust, it does not lead to the closed system of equations �ad-
ditional considerations should be used to close the system�.

Another continuous approach is based on the multidimen-
sional Fokker-Plank equations, which describe the evolution
of the particle density distribution for each of the possible
pore occupancies. These equations could be obtained as a
continuous limit of the rate theory approach, when the num-
ber of discrete binding sites approaches infinity �14�, or as
continuous representation of the stochastic Langevin equa-
tions �18�. This description is detailed enough to account
explicitly for the complex energy profiles inside the pore and
for explicit particle-particle interactions. Therefore, this ap-
proach is promising for creating robust, general and detailed
analytical theory of the diffusion in the narrow pores. Present
work is also based on the formalism of the multidimensional
Fokker-Plank equations.

One of the problems, which arise in the analytical theories
in general and in the theories based on the Fokker-Plank
equations in particular, is the choice of the boundary condi-
tions. The boundary conditions depend on the model of the
pore boundary and the details of particle exchange events
adopted in the theory. It is obvious that the particle, which
leaves the pore, can reenter it with certain probability, which
decreases with time and depends on the diffusion coefficient
and the properties of the transition region between the pore
and the bulk solution �the vestibule�. As a consequence ef-
fective concentration of particles in the vicinity of the chan-
nel entrance differs from the concentration in the bulk solu-
tion �19�. The microscopic kinetic balance at the pore
boundary is usually considered in order to describe complex
events particle escape and reentrance. This method is the
most straightforward, but it leads to complex boundary con-
ditions, which contain unknown kinetic constants. The com-
plexity of such boundary conditions is shown in details in the
work of Stephan et al. �14�, where the microscopic rate con-
stant theory for the channel with multiple occupancy was

developed systematically and transformed to the system of
the Fokker-Planck equations in continuous limit �14�. The
equations for n and n+1 particles are coupled by means of
unknown kinetic parameters of the channel boundaries. The
boundary conditions are quite nontrivial in the case of two
particles and become extremely complex in the general case.
As a result the pores with more then two ions are not con-
sidered �14�. Another example of complex boundary condi-
tions, which contain the current through the channel, can be
found in the work �19�. In the present work an explicit mi-
croscopic description of the ion exchange events is avoided,
which greatly simplifies boundary conditions and puts our
framework apart from existing analytical theories.

Another problem of analytical theories is that the equation
can only be written for given number of particles, while this
number fluctuates in real pore. Thus, different occupancy
states of the pore and transitions between them should be
taken into account. In the pioneering work of Levitt �20� this
problem was first addressed in the case of the single-ion
channel, which can exists in the states with and without an
ion. The empty channel is modeled by a single state, which is
associated with the ion exchange events at both sides of the
channel. In the work �19� this scheme was improved by
eliminating unphysical correlations between the exit of the
ion from one side of the channel and its reentrance from the
other side. Despite successful application to Gramicidin
channel �21� this approach was not generalized to the chan-
nels with multiple occupancy. The ion exchange with exter-
nal solutions is mimicked by the empty state and the corre-
sponding kinetic constants in this approach. Thus the weights
of the occupancy states depend on unknown kinetic param-
eters, which is not always acceptable. Another approach to
the problem of variable pore occupancy is developed in the
works of Nelson �22� and Roux �23� where the properties of
the channel are expressed as the weighted averages over oc-
cupancy states. The corresponding occupancy states theory
of Nelson �22� is a purely phenomenological kinetic theory.
It is based on common structural features of two biological
channels �the gramicidin A channel and the KcsA channel
selectivity filter�, which limits its generality. The statistical
theory of Roux �23�, being quite general, is formulated for
equilibrium conditions, thus the current through the channel
and other nonequilibrium properties cannot be computed.
Despite the limitations, these theories demonstrate that the
averaging over discrete occupancy states is a very effective
way of describing channels with fluctuating number of par-
ticles. In the present work we generalized this approach to
the case of nonequilibrium conditions and used it in our ana-
lytical framework.

It is possible to conclude that a general theory of multi-
particle diffusion in narrow pores is highly demanded now.
The goal of this work is development of such general theory
of the multiparticle single-file diffusion. The distinctive fea-
tures of our theory are the following:

�1� our theory is based on the very basic principles of
nonequilibrium statistical physics and the theory of probabil-
ity. It is built in the bottom-up manner with minimal and
controllable assumptions and maximal generality in mind;

�2� it describes one-dimensional single-file diffusion of
multiple particles in a narrow pore in nonequilibrium condi-
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tions. The effects of different particle concentrations and the
external electrostatic potential are taken into account;

�3� the particles move in an arbitrary potential, created by
the pore walls, and interact strongly by means of an arbitrary
repulsive interaction potential;

�4� Any nonequilibrium macroscopic characteristic of the
pore �such as the current or the mean occupancy� can be
computed if the external conditions and the interaction po-
tentials inside the pore are known;

�5� the problem is reduced to a closed set of simple partial
differential equations of increasing dimensionality. The num-
ber of equations is limited and equal to the maximal number
of particles, which can reside in the pore. This set can be
solved numerically for any number of particles, which is
only limited by the computer time and memory; and

�6� the fluctuations of the number of particles, which oc-
cur due to exchange between the pore and external solutions,
are taken into account without explicit modeling of complex
kinetics of the particle exchange events and the pore vesti-
bules. It is assumed that the correlations between the par-
ticles, which remain in the pore and the particle, which
crosses the pore boundary are lost immediately upon escape.
This leads to convenient factorization of the probability den-
sity functions and allows considering the solutions as ideal
thermal bathes. This assumption leads to very simple and
natural boundary conditions and allows computing the prob-
abilities of the occupancy states without additional assump-
tions and parameters. More complex models of the pore ves-
tibules may be used if necessary.

Our theory is tested by applying it to the simplified model
of the single-file pore with rigid structure inspired by the
selectivity filter of the KcsA ion channel, which was devel-
oped in our previous works �24,25�. The pore is considered
rigid in the sense that there are no motions in the pore wall
with the characteristic times larger then the characteristic
particle passage time. It is necessary to emphasize that this
model is nothing more than simple, general and convenient
playground for testing our theoretical developments. It has
no relation to real ion channel except the dimensions and the
qualitative shape of the energy profile. It is chosen as a test
case because of its simplicity and immediate compatibility
with the formalism developed in this work. The results ob-
tained with this model should not be compared with real ion
channels in realistic conditions. Since this work presents the
method in development, no attempts were made to build
more realistic models of real ion channels or other single-file
pores. The macroscopic characteristics of this simplified
model are obtained in a wide range of parameters and com-
pared to the results of earlier studies �25�. The predictions of
our theory correlate very well with earlier results obtained by
other techniques. This confirms the correctness of our theo-
retical framework.

II. THEORY

A. Formulation of the problem and the basic assumptions

Let us consider a system, which consists of two reservoirs
of particles G1 and G2 and a narrow channel GCh, which
connects them. The motion of particles in the channel is one

dimensional and single-file �the particles do not pass by each
other�. The particles move along the coordinate x� �−L ;L�,
where points �L correspond to the ends of the channel. The
particles interact strongly with each other and with the chan-
nel structure. The number of particles in the channel fluctu-
ates in time due to exchange with the reservoirs. Not more
than M particles can reside in the channel at the same time.

There are fixed concentrations of particles c1� and c2� in the
reservoirs �in 1 /Å3 units�. They correspond to “one-
dimensional concentrations” c1 and c2 �in 1 /Å units� on the
channel boundaries,

c1,2 = c1,2� S �1�

where S is the effective cross section of the channel on its
boundaries. We will use the term “concentration” for c1,2
hereafter for the sake of simplicity. The electrostatic poten-
tials in the reservoirs are −� and �, respectively. The reser-
voirs are considered to be in thermodynamic equilibrium.

It is assumed that there is no correlation between the mo-
tion of particles in the channel and in the reservoirs. This
assumption is the key point of our theory. It presumes that
the particle, which crosses the pore boundary and escapes to
the reservoir, loses all correlations with the particles, which
remain in the pore immediately. This means that the prob-
ability of reentry of the escaped particle is the same as the
probability of entry of any other particle from the reservoir
�the particle has no memory�. As a result the reservoirs do
not “feel” the presence of the pore and could be considered
as ideal heat bathes with given concentrations of particles.
The basic assumption of the immediate loss of correlations at
the pore boundary allows describing this boundary in the
model-free manner but the models of the pore vestibules
could also be incorporated if necessary. This basic assump-
tion can also be derived from dynamic equations in certain
conditions as it is shown in Appendix B.

There are no energy barriers between the channel and the
reservoirs, so the exchange of particles between the channel
and the reservoirs is purely diffusive. Let us assume that the
volumes of the reservoirs are V1 and V2 and the total number
of particles in the system G=G1�GCh�G2 is N�M �these
auxiliary quantities will vanish later in the thermodynamic
limit�.

All energies are in the kBT units, where kB is the Boltz-
mann constant, T is the absolute temperature. All quantities
in the theory are assumed to be dependent on time. In the
expressions where the arguments are omitted for compact-
ness the parameter t is also omitted. Steady state quantities
are marked explicitly. Our task is to find such nonequilibrium
quantities of the channel as the distribution of the particle
density along the channel, the current, the mean occupancy,
etc., as functions of particle concentrations in reservoirs and
external potentials.

B. Outline of the theory

The main difficulty of describing our system is that the
number of particles in the channel is variable, while all con-
ventional dynamic equations and relations of the statistical
physics, which describe nonequilibrium systems, operate
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with a fixed number of particles. The idea of our theoretical
development is to present the distribution function of our
system as a series in discrete channel occupancies. Such de-
composition is straightforward at equilibrium �23�, but be-
comes nontrivial in our case. The outline of the theoretical
development is the following:

�1� the N-particle distribution function of the whole sys-
tem F�x1 , . . . ,xN ; t� is constructed taking into account the
properties of the reservoirs. Hereafter x1 , . . . ,xN are the co-
ordinates of particles, t is the time;

�2� the probabilities wn of the occupancy states with n
particles inside the channel are found �0�n�M�;

�3� the partial distribution functions fm
�n��x1 , . . . ,xm ; t� of m

�m�n� particles in the channel, which contains n particles
are found. All quantities of the reservoirs except c1,2 and �
vanish at this step after transition to the thermodynamic
limit;

�4� it is shown that any property of the channel can be
obtained as a series in channel occupancies. They depend on
unknown n-particle distribution functions inside the channel
��n��x1 , . . . ,xn ; t�; and

�5� it is shown that the distribution functions
��n��x1 , . . . ,xn ; t� are the solution of the hierarchical set of
partial differential equations, which is obtained from the
Langevin equation of motion of the particles inside the chan-
nel.

C. Multiparticle distribution function of the whole system

Let x1 ,x2 , . . . ,xN be the coordinates of N identical par-
ticles located in the whole region G=G1�GCh�G2. xi�s are
assumed to be the vectors in the reservoirs and the scalars in

the channel. It is obvious that N= N̄1+ N̄Ch+ N̄2, where N̄i is
the average number of particles in the region i. Thus, the

concentrations are ci=
N̄i

Vi
. Let us construct the N-particle dis-

tribution function F�x1 , . . . ,xN ; t� of the whole system G.
The role of the reservoirs in our system is only to provide

the equilibrium heat baths with constant concentrations of
particles. Thus we assume the simplest possible model of the
reservoirs with independent particles �which do not interact
or interact in the mean field approximation� so that the mul-
tiparticle distribution function is factorized in the reservoirs.
The distribution function �not normalized� of any particle i in
any of the reservoirs can be written as

�̃�xi� = �1	1�xi� + �2	2�xi� , �2�

where

	 j�xi� = �1, if xi � Gj

0, if xi � Gj
� j = 1,2,Ch �3�

is the auxiliary function which selects one of the regions,
�i=e
i is the absolute chemical activity, 
i is the chemical
potential in the ith region. The chemical activity is propor-
tional to concentration �i=� ·ci, where � is the coefficient of

chemical activity. Since the model of the reservoirs is arbi-
trary, it is possible to assume that ��1, which is always true
for the solutions of independent particles. In the steady state
theory arbitrarily values of � could be used �see Appendix
A�. Equation �2� can be rewritten as

�̃�xi� = c1	1�xi� + c2	2�xi� . �4�

It is not possible to factorize the distribution function in
the region GCh, thus the multiparticle distribution functions
of n ions, which reside in the channel ��n��x1 , . . . ,xn ; t�
should be introduced ���0��1�. The general distribution
function F�x1 , . . . ,xN ; t� can be written then as a sum over
the states with a fixed number of particles in the channel,

F�x1, . . . ,xN;t� = Z−1�
n=0

M
1

n! �
i1,2. . .n=1

�i1�i2�. . .in�

N

���n��xi1
, . . . ,xin

;t� 	
k=1

�k�i1,2. . .n�

N

�̃�xk� , �5�

where Z is the normalization factor. We assume that all par-
ticles in the system are physically indistinguishable but as-
signed unique numbers to aid subsequent derivations. The
notation xij

here and below means that the particle with num-
ber ij resides in jth place inside the channel counting from
the left boundary. The factor 1 /n! appears because the func-
tion ��n��x1 , . . . ,xn ; t� is defined symmetric �invariant by
swapping the coordinates of each two particles�.

If the ith particle reaches the boundary of the channel
�xi= �L�, then it is considered to be in the corresponding
reservoir. By definition, it loses interaction with other par-
ticles in the channel �no correlations of motion between par-
ticles inside the channel and in the reservoirs�, thus

��n��x1, . . . ,xn;t�
xi=L = �̃�xi�
xi=L

���n−1��x1, . . . xi−1,xi+1 . . . xn−1;t� = c1,2

���n−1��x1, . . . xi−1,xi+1 . . . xn−1;t� . �6�

Expression �6� is fundamental for subsequent derivations. It
represents the boundary conditions for functions
��n��x1 , . . . ,xn ; t� for any n.

The normalization factor Z is

� = �
G

dx1, . . . ,�
G

dxN��n=0

M
1

n! �
i1,2. . .n=1

�i1�i2�. . .in�

N

���n��xi1
, . . . ,xin

;t� 	
k=1

�k�i1,2. . .n�

N

�̃�xk�
= �

n=0

M

CN
n p�n���N̄1 + N̄2��N−n, �7�

VALERY N. KHARKYANEN AND SEMEN O. YESYLEVSKYY PHYSICAL REVIEW E 80, 031118 �2009�

031118-4



where CN
n = N!

�N−n�!n! ;

p�n� = �
−L

L

dx1, . . . ,�
−L

L

dxn��n��x1, . . . ,xn;t� , �8�

is the norm of ��n��xi1
, . . . ,xin

; t�, p�0��1.

Taking into account that N�n, N!
�N−n�! �Nn, and N̄1+ N̄2

�N, we obtain

� = NN�
n=0

M
p�n�

n!
�9�

Inserting Eq. �9� into Eq. �5� yields:

F�x1, . . . ,xN;t� = �
n=0

M
1

Nnn! �
i1,2. . .n=1

�i1�i2�. . .�in�

N ��n��xi1
, . . . ,xin

;t�

�
m=0

M p�m�

m!

	
k=1

�k�i1,2. . .n�

N

��xk� �10�

where ��xi�= �̃
N =

c1	1�xi�+c2	2�xi�
N is the normalized distribution function of the particle located outside the channel.

Distribution function �10� can be rewritten in a more convenient form

F�x1, . . . ,xN;t� = �
n=0

M

wn��n��x1, . . . ,xN;t� , �11�

where

wn =

p�n�

n!

�
m=0

nmax p�m�

m!

�12�

is the probability of the occupancy state with n ions in the channel �see the proof below�;

��n��x1, . . . ,xN;t� =
1

Nnp�n� �
i1,2. . .n=1

�i1�i2�. . .in�

N

���n��xi1
, . . . ,xin

;t� 	
k=1

�k�i1,2. . .n�

N

��xk� �13�

is the N-particle partial, not normalized distribution function, which corresponds to the configuration with any n particles
inside the channel and the other N−n particles in the reservoirs.

D. Probabilities of the occupancy states

Let us introduce the function

Qn�x1 . . . xN� = �
i1,2,. . .,n=1

N
1

n!� 	
k=1

�i1�i2�. . .in�

n

	Ch�xik
� · 	

j=1

�j�i1,2. . .k=1�

N

�	1�xj� + 	2�xj��� , �14�

which is equal to unity when exactly n ions are located inside
the channel and equal to zero otherwise. The probability of
the configuration with any n ions inside the channel can be
written as the average of Eq. �14� with distribution function
�11�,

�Qn� � �
G

dx1 . . . �
G

dxNQn�x1, . . . ,xN�F�x1, . . . ,xN;t� .

�15�

Substituting Eqs. �14� and �11� into Eq. �15�, we obtain after
some transformations �Qn�=wn, where wn is given by Eq.
�12�. Thus, we proved that the weights wn are the probabili-
ties of the occupancy states with n ions in the channel.

Let us test the correctness of our derivations by consider-
ing the simplest limiting case of the free �not interacting�
particles, equal concentrations c1=c2=cCh and M �1. In this
case p�m�= �cChVCh�m= �n̄Ch�m, where n̄Ch is the average num-
ber of particles in the channel, VCh is the “volume” of the
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channel. As a result, the Eq. �12� transforms to the well-
known Poison distribution

wn =

�n̄Ch�n

n!

�
m=0

M
�n̄Ch�m

m!

�
�n̄Ch�n

n!
e−n̄Ch,

as it was expected.

E. Partial distribution functions in the channel

In principle, distribution function �11� can be used to find
the statistical averages of all properties of the channel; how-
ever, it depends on the coordinates of a very large number of
particles in the reservoirs and the number of particles N. The
dependence of the statistical averages on the coordinates of

particles in the reservoirs should obviously vanish in the
thermodynamic limit. Let us show this by considering an
arbitrary function B�x1 , . . . ,xM�, which depends on the coor-
dinates of M particles inside the channel. Such function
should be built taking into account possible permutations of
N particles between the channel and the reservoirs �26�,

B�x1, . . . ,xM ;t� = �
m=0

M
1

m! �
k1=1

�k1�. . .�

N

. . . �
km=1

�. . .�km�

N

b�xk1
, . . . ,xkm

;t� ,

�16�

where b�xk1
, . . . ,xkm

� is symmetric with respect to permuta-
tions of any pair of its arguments and cannot be written as a
sum of other functions, which depend on less then m vari-
ables �26�.

The statistical average of Eq. �16� reads as

�B� = �
m=0

M �
G

dx1 ¯ �
G

dxN
1

m! �
k1=1

�k1�. . .�

N

¯ �
km=1

�. . .�km�

N

b�xk1
, . . . ,xkm

;t�F�x1, . . . ,xN;t�

= �
m=0

M

CN
m�

GCh

dx1 ¯ �
GCh

dxmb�x1, . . . ,xm;t��
G

dxm+1, . . . ,�
G

dxNF�x1, . . . ,xN;t� �17�

because the number of identical terms in the sum
�

�k1�. . .�
k1=1

N
¯�

�. . .�km�
km=1

N is N!
�N−m�! .

It is obvious that

�
G

dxm+1 . . . �
G

dxNF�x1, . . . ,xN;t�

= �
n=0

M

wn��
G

dxm+1 . . . �
G

dxN��n��x1, . . . ,xN;t�� .

�18�

Inserting Eq. �13� into Eq. �18� yields

�
G

dxm+1 . . . �
G

dxN��n��x1, . . . ,xN;t�

= �
G

dxm+1 . . . �
G

dxN� �
i1,2. . .n=1

�i1�i2�. . .in�

N

����n��xi1
, . . . ,xin

;t� 	
k=1

�k�i1,2. . .n�

N

��xk�/Nnp�n��
�19�

This expression is not zero only if the coordinates of m par-
ticles �x1 , . . . ,xm�, which are not integrated over, are the ar-

guments of ��n��xi1
, . . . ,xin

; t�. Let us call these m particles
“fixed particles,” while all other particles will be called “free
particles” �these terms do not mean that the particles are
physically constrained by any means�. The number of per-
mutations of the free particles between the channel and the
reservoirs is �N−m�!

�N−n�! , while the number of permutations be-
tween the fixed and free particles inside the channel is n!

�n−m�! .
Thus, Eq. �19� can be rewritten as

�
G

dxm+1 . . . �
G

dxN��n��x1, . . . ,xN;t�

=
�N − m�!
�N − n�!

n!

�n − m�!�G

dxm+1 . . . �
G

dxN

����n��x1, . . . ,xn;t� 	
k=n+1

N

��xk�/Nnp�n�� .

Taking into account that CN
m �N−m�!

�N−n�!
n!

�n−m�!
1

Nn � 1
m!

n!
�n−m�! , average

�17� can be written as

�B� = �
m=0

M
1

m! �
n=m

M

wn�
−L

L

dx1 ¯ �
−L

L

dxmb�x1, . . . ,xm;t�

�� n!

�n − m�!�−L

L

dxm+1 ¯ �
−L

L

dxn���n��x1, . . . ,xn;t�
p�n� �� .

This form does not contain the number of particles N and can
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be used in the thermodynamic limit N→�,
N̄1

V1
→c1, and

N̄2

V2

→c2. The final expression for the average of B can be writ-
ten in a more convenient form as

�B� = �
m=0

M
1

m! �
n=m

M

wn�
−L

L

dx1 . . . �
−L

L

dxmb�x1, . . . ,xm;t�

�fm
�n��x1, . . . ,xm;t� �20�

where wn is defined by Eq. �12�;

fm
�n��x1, . . . ,xm;t� =

n!

�n − m�!�−L

L

dxm+1 ¯

��
−L

L

dxm���n��x1, . . . ,xn;t�
p�n� � �21�

is the well-known m-particle partial distribution function of
the system �the channel in our case�, which contains n par-
ticles �26�.

Expressions �12�, �20�, and �21� depend on the coordi-
nates of particles in the channel only. They provide full sta-
tistical description of the diffusion through the channel and
can be used to compute all desirable statistical averages pro-
viding that the functions ��n��x1 , . . . ,xn ; t� are known.

F. Macroscopic properties of the channel

Once the distribution functions ��n��x1 , . . . ,xn ; t� are
found as described below, the macroscopic properties of the
channel could be computed.

1. Distribution of particle density

The density of particles at point z for some microscopic
configuration of ions x can be written as ��z ,x1 , . . . ,xn�
=�i=1

M ��z−xi�, where xi are instantaneous positions of the
particles dependent on time. Substituting this expression to
Eq. �20� in place of b we get the steady state distribution of
the particle density along the channel,

��z;t� = ���z,x��� = �
n=1

M

wnf1
�n��x1�

= �
n=1

M

n · wn�
−L

L

dx2 ¯ �
−L

L

dxn���n��x1, . . . ,xn;t�
p�n� � .

�22�

2. Current

The flux of particles through the channel with fixed num-
ber of particles n and known particle density ��z ; t� is �18�

j�z;t� = − D� �U�z�
�z

+
�

�z
���z;t� , �23�

where U�z ; t�=U0�z�+�−L
L dz�V�z−z����z� ; t� is the total en-

ergy of the particle at point z, which interacts with the par-
ticle density ��z ; t�. This flux can be written as

j�z;t� = − De−U�z;t����z;t�
�z

,

where ��z ; t�=eU�z;t���z ; t�. For any instantaneous macro-
scopic configuration of n particles the density is

�n�z ,x1 , . . . ,xn�=�i=1
n ��z−xi�; thus, the instantaneous mi-

croscopic current is

j�n��z,x1, . . . ,xn� = − De−U�z;t� �

�z�eU�z;t��
i=1

n

��z − xi�� .

�24�

Averaging Eq. �24� with the normalized symmetric distribu-

tion function
��n��x1,. . .,xn;t�

p�n� we get the time-dependent current
through the channel containing exactly n particles in the
cross-section z,

J�n��z;t� � �j�n��z,x�� = − D�
−L

L

dx1, . . . ,dxne−U�z;t� �

�r

��eU�z;t��
i=1

n

��z − xi����n��x1, . . . ,xn;t�
p�n� ,

or, after some transformations,

J�n��z;t� = − D� n

p�n��
−L

L

dx2 . . . dxn

�e−Un�z,x2,. . .,xn��v�n��z,x2, . . . ,xn;t�
�z � . �25�

In the steady state the current is obviously the same for each
cross section of the channel, therefore Eq. �25� is in fact
independent of z. For the sake of simplicity, we will compute
the current at z=−L. The full steady state current through the
channel with fluctuating occupancy is �according to Eq. �20��

J � �j�− L,x��� = �
n=1

M

wn · J�n��− L�

or, taking into account Eq. �35�

J = −
D

�
m=0

M
p�m�

m!

�
n=1

M � 1

�n − 1�!�−L

L

dx2, . . . ,dxn

�e−Un�−L,x2,. . .,xn�� �v�n��z,x2, . . . ,xn�
�z

�
z=−L

� . �26�

3. Mean occupancy

The mean occupancy is computed trivially as

nmean = �
n=1

M

n · wn. �27�
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G. Concentration dependencies of the channel properties in
the steady state

As it is shown in Appendix A, the functions ��n� and p�n�

could be written as n-th degree polynomial functions of con-
centrations c1 and c2 in the steady state �formulas �A4� and
�A5� respectively�, Unknown functions gk

�n�, k=0,1 , . . . ,n in
Eqs.�A4� and �A5� and are independent on concentrations
and should be found separately. As a result, the concentration
dependence of any steady state channel property could be
determined explicitly providing that gk

�n� are known. Particu-
larly, the occupancy probabilities wn are

wn�r1,r2� =

1

n!�k=0

n

ak
�n�r1

n−kr2
k

�
m=0

M

�
k=0

m
1

m!
ak

�m�r1
m−kr2

k

, �28�

where r1=c1eU0�−L� and r2=c2eU0�L�.
Taking into account a0

�0�=1, which is obvious from Eq.
�A5�, we get the system of linear equations for ak

�n�,

�
k=0

n

ak
�n�r1

n−kr2
k = n !

wn�r1,r2�
w0�r1,r2�

. �29�

The steady state current though the channel in a configura-
tion with particular occupancy n could be written, taking into
account Eqs. �A2� and �A5� and �25�, as

J�n� = − D�� n

�
k=0

n

ak
�n�r1

n−kr2
k

�
k=1

n �
−L

L

dx2, . . . ,dxn

�e−Un�z,x2,. . .,xn��gk
�n��z,x2, . . . ,xn�

�z
r1

n−kr2
k�

z=−L

.

�30�

Equation �30� could be written as a system of linear equa-
tions for �k

�n�

�
k=1

n

�k
�n�r1

n−kr2
k = �n − 1� !

− J�n��r1,r2�
D

·
wn�r1,r2�
w0�r1,r2�

,

�k
�n� = �

−L

L

dx2, . . . ,dxne−Un�z,x2,. . .,xn��gk
�n��z,x2, . . . ,xn�

�z
.

�31�

Thus, in order to find the concentration dependence of wn
in the steady state conditions one should compute the set of
functions wn�r1 ,r2� by solving Eq. �29� numerically for dif-
ferent pairs of concentrations �exact values of concentrations
do not matter�. Inserting these values into the system of lin-
ear Eq. �29� for each n=1, . . . ,M one can compute the set of
coefficients ak

�n�. The concentration dependence of J could be

found in the same way by computing J�n��r1 ,r2� for several
different pairs of concentrations for each n=1, . . . ,M and
finding the set of coefficients �k

�n�.
We conclude that the concentration dependencies of all

channel properties could be determined analytically if the
corresponding coefficients are pre-computed numerically.
The cost of this pre-computation is negligible in comparison
to the time of numerical computation of all concentration
dependencies.

H. n-particle distribution functions of the channel

The n-particle distribution functions in the channel
��n��x1 , . . . ,xn ; t� are the only remaining unknown compo-
nents in our theory. It is necessary to note that these func-
tions are defined for the channel which is attached to the
reservoirs but contains exactly n particles all the time. The
fluctuations of the number of particles in the system are de-
scribed by occupancy probabilities wn, which weigh the con-
tributions of the corresponding occupancy states. The prob-
abilities wn depend on ��n��x1 , . . . ,xn ; t� �see Eqs. �12� and
�8�� so that our initial problem is now reduced to finding
��n��x1 , . . . ,xn ; t� for 0�n�M.

The task of finding the functions ��n��x1 , . . . ,xn ; t� is in-
dependent from the general theory developed above and de-
pends on the physical processes inside the channel and its
molecular design. It is obvious that dynamic equations of
individual particles inside the channel should be solved to
get these functions. Therefore the strategy of finding
��n��x1 , . . . ,xn ; t� and necessary additional assumptions de-
pend on the specific system under study, while other parts of
the theory remain completely general. In this work we de-
velop the technique, which allows finding steady state prop-
erties of the channel where the motion of particles is stochas-
tic and overdamped.

The motion of n particles inside the channel is governed
by their interaction with the channel structure, particle-
particle interactions and the external field. The particles
move in the potential Un�x� ,��, x� = �x1 ,x2 , . . . ,xn� created by
the channel walls and the external field �. The potential Un is
assumed to be smooth enough. Interaction between the par-
ticles i and j is described by the potential V�xi−xj�. Let us
assume that the motion of particles in the channel is stochas-
tic and overdamped. In this case it can be described by the
set of Langevin equations

ẋi = − D
�Un�x1, . . . ,xn�

�xi
+ �2D�i�t� , �32�

where i=1,n;

Un�x1, . . . ,xn� = �
i=1

n

U0�xi� + �
i,j=1

�i�j�

n

V�xi − xj� �33�

is the total potential of n particles; D is the diffusion coeffi-
cient; �i is the white noise, ��i�=0, ��i ·� j�=�i,j; U0 is the
single-particle energy profile created by the pore walls �see
Sec. II for details�.

It is necessary to note that the diffusion coefficient D is
the one-dimensional property, which is not directly related to
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the diffusion coefficient in bulk solution. D is a free param-
eter in our model. D could also be considered variable along
the pore and written as D�x� if necessary. However, we as-
sumed that D is a constant in the sake of simplicity.

The equation for the n-particle distribution function,
which corresponds to set �32�, is the n-dimensional Focker-
Planck equation �18�,

���n��x1, . . . ,xn,t�
�t

= D�
i=1

n
�

�xi
� �Un�x1, . . . ,xn�

�xi
��n��x�,t�

+
���n��x1, . . . ,xn,t�

�xi
� �34�

where x1,. . .,n� �−L ,L�. The distribution function is defined
on the n-dimensional hypercube Rn.

In principle it is possible to solve the set
of time-dependent Eq. �34�; however, the steady state

�
���n��x1,. . .,xn;t�

�t =0� is considered in this work. Thus the time
dependence is absent hereon in all expressions. The set of
Eq. �34� is subject to the boundary conditions �Eq. �6��.
These boundary conditions are recursive—the solution of the
n-dimensional problem serves as a boundary conditions for
the �n+1�-dimensional one. Thus the solution of the whole
problem is achieved as a consecutive solution of the Eqs.
�34� of growing dimensionality for n=1, . . . ,M. It is impor-
tant to note that Eqs. �34� become interdependent because of
the boundary conditions �Eq. �6�� only. There are no terms in
�34�, which describe the interchange between the occupancy
states with different n. The proof of this nontrivial fact is
given in Appendix B.

It is obvious that the Eq. �34� cannot be solved analyti-
cally. Numerical solution is also nontrivial and depends
strongly on the nature of functions U0 and V. In the majority
of real systems the particle-particle interaction is repulsive
and discontinuous at zero distance �i.e., Coulomb or van der
Waals interactions�. As a result, the function ��n� grows rap-
idly in certain regions of the configuration space, which
makes the numerical solvers unstable. In order to overcome
this difficulty and to simplify the equations, let us define a
new function,

vn�x1, . . . ,xn� = eUn�x1,. . .,xn���n��x1, . . . ,xn� . �35�

In equilibrium ��n��x1 , . . . ,xn�=const·e−Un�x1,. . .,xn� and
vn�x1 , . . . ,xn�=const. In the nonequilibrium conditions the
function v contains the nonequilibrium part of the distribu-
tion function. It is possible to say that the function v is re-
lated to local entropy, while the term exp�Un�x1 , . . . ,xn�� is
related to energy.

Equation �34� can be written in terms of the functions v in
the steady state as

�
i=1

n
�

�xi
�e−Un�x1,. . .,xn� �

�xi
vn�x1, . . . ,xn�� = 0, n = 1, . . . ,M .

�36�

They are subject to the recursive boundary conditions

vn�− L,x2 . . . xn� = r1vn−1�x2 . . . xn�, vn�x1 . . . xn−1,L�

= r2vn−1�x1 . . . xn−1� �37�

where r1=c1eU0�−L� and r2=c2eU0�L�;

v1�x� = r1 + �r2 − r1��
−L

x

eU0�x��dx��
−L

L

eU0�x�dx �38�

is the analytical solution in the case n=1.
Equation �36� can be written in the compact operator form

as

�vn�x1, . . . ,xn� = �U�x1, . . . ,xn� · �vn�x1, . . . ,xn� . �39�

The ith particle is always confined by the region xi−1
�xi�xi+1; therefore, the hypercube Rn can be divided into
n! equivalent regions, which differ by the exchange of a pair
of variables. Thus, it is possible to find the function v in the
“main” region −L�x1�x2� . . . �xn−1�xn�L only and ex-
pand it to the whole hypercube by exchanging the corre-
sponding pairs of coordinates. The main regions in the cases
of two and three dimensions are shown in Fig. 1.

It is possible to show that vn is somewhat similar to a
harmonic function in the main region. It contains no local
minima or maxima and reaches the extremal values on the
boundary of the main region. Thus, vn is limited, smooth and

(a)

(b)

X3

X1

X2

X1

X2

FIG. 1. The main region in the �a� two-dimensional and �b�
three-dimensional cases. The main region is shaded in �a�. In �b� the
main region is inside the shaded polyhedron.
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monotonous in the main region along all its coordinates. This
greatly simplifies the numerical solution.

Numerical solution

Although the system of Eqs. �39� with boundary condi-
tions �37� looks very compact and elegant, it is still very
challenging for numerical solution. The principal difficulty is
the fact that the elliptic partial differential equations �PDEs�
of growing dimensionality should be solved in succession.
Simple iterative finite-difference methods of solving elliptic
PDEs become too slow for us already for n=2. The conver-
gence properties of simple numerical solvers are very differ-
ent for different dimensionality of the problem, while in our
case the method should be convergent for all dimensionali-
ties from 1 to M. Another difficulty is the finite-difference
approximation of the first derivatives in Eq. �39�. The terms
�Un�x�� /�xi could be fast changing, which requires very fine
grids and prevents us from using fast multigrid techniques
�27�.

In order to overcome these difficulties, we transform our
boundary problem into an equivalent variation problem. The
minimization of the functional

Q = �
G

dx1, . . . ,xn · exp�− Un�x1, . . . ,xn����v�2, �40�

is equivalent to solving the Dirichlet problem defined by
Eqs. �39� and �37�.

Indeed, the Euler-Lagrange equation for
R=exp�−Un�x1 , . . . ,xn����v�2 is

�R

�v
− �

i=1

n
�

�xi

�R

�� �v
�xi

� = 0,

which leads, after some transformations, to Eq. �39�.
Let us define the finite-difference approximation of func-

tional �40�:

Q = �
i1,i2. . .in=2

i1�i2�. . .�in

K−1

Ei1i2. . .in

1

2�
k=1

n ��vi1. . .ik+1. . .in
− vi1. . .ik. . .in

h
�2

+ �vi1. . .ik. . .in
− vi1. . .ik−1. . .in

h
�2� �41�

where K is the number of discrete points along each of n
coordinates; Ei1i2. . .in

=e−Un�xi1
,xi2

,. . .xin
�; h=xi+1−xi is the dis-

crete step. The points xi, 1� i�K are inner points of the grid
while the points x1=−L, xK=L correspond to the boundary
conditions. We used the mean of the forward and backward
approximations of the first derivatives to make the expres-
sion symmetric. This simplifies subsequent derivations.

The minimum of Q is reached when �Q
�vi1i2. . .in

=0 at all inner

points of the n-dimensional grid. Trivial but lengthy transfor-
mations lead to the following relation, which minimizes Eq.
�41�:

vi1i2. . .in
=

Ei1i2. . .in�
k=1

n

�
�=�1

vi1. . .ik+�. . .in
+ �

k=1

n

�
�=�1

Ei1. . .ik+�. . .in
· vi1. . .ik+�. . .in

2nEi1i2. . .in
+ �

k=1

n

�
�=�1

Ei1. . .ik+�. . .in

. �42�

If relation �42� is satisfied at each inner point of the grid then
vi1i2. . .in

is the finite-difference solution of variation problem
�40� and corresponding boundary problem �39�. It is impor-
tant that relation �42� applied iteratively is a smoothing op-
eration. The value of v at each point is set to the weighted
average of v at adjacent points in each subsequent iteration
and thus smooths the high-frequency fluctuations of v. This
allows us to use Eq. �42� as an iterative smoother in the
multigrid algorithm �27�.

We apply a modified full multigrid technique �27� to find
the solution. Our method implements the first stage of the
standard full multigrid algorithm. We start with the coarsest
grid with three points in each dimension and applied Eq. �42�
to a single inner point to find the exact solution. Then the
solution is interpolated to a finer grid with 5 points in each
dimension using the distributive stencil generalized to the
n-dimensional case �27�. The approximate solution is refined

by applying Eq. �42� iteratively until the convergence crite-
rion is met. This solution is interpolated to a finer grid and
the procedure is repeated until the solution on the finest grid
is obtained.

This technique is very stable and fast and allows us to
avoid problems with the fast-growing derivatives. It is imple-
mented as a FORTRAN 90 program, which handles the problem
of arbitrary dimensionality limited by the available computer
memory only �the execution time grows exponentially with
the increase of dimensionality�. We do not analyze the con-
vergence properties of this method and do not intend to reach
arbitrary precision. Thus all computations presented in this
work should be addressed as semiquantitative to avoid prob-
lems in interpretation caused by possible numerical errors.

It is necessary to note that the technique presented here is
only one of the possible ways to solve the set of Eq. �39�. All
the results of our theory stand regardless of the numerical
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procedure used to find the functions v�n�. More robust and
precise technique could be implemented in the future.

I. Application to the simplified model of the single-file pore

In order to test our general theory we have to apply it to
some model system, which is sufficiently simple and well
studied to serve as a testing ground. We utilized the simpli-
fied model of the single-file pore inspired by the selectivity
filter of KcsA ion channel developed in our previous works
�24,25�.

The KcsA potassium channel is now a classical object for
ion channel modeling and simulations �6–8�. However, the
real channel is too complex and shows too complicated be-
havior to be used as a test case for validating our theoretical
framework. Particularly, the channel structure is not rigid in
the sense that there are complex slow gating motions, with
the time scales much larger than the ion passage time. Our
theory currently operates with rigid pores only �the pores,
which lack motions slower than the ion passage time�. Thus
we designed an extremely simplified “cartoon model” of the
selectivity filter of the channel, which is the most structured
part of the structure. This model has no relation to real chan-
nel except the dimensions and the shape of the single-ion
energy profile. Thus, the results described below should not
be related to real channel. They only serve as a validation of
our theoretical developments against the data obtained on the
same model in our previous works �24,25�. The relation be-
tween the mode and the structure of the real channel is
shown in Fig. 2.

The simplicity of the chosen model makes it very conve-
nient for testing our theoretical framework. In this model the
one-dimensional motion of ions is described in terms of the
single-ions energy profile U0 and the ion-ion interaction po-
tential V, which makes the application of our theory straight-
forward.

The shape of the single-ion energy profile U0 could be
deduced from MD simulations of the KcsA channel. The

inverted bell-like shape of this profile is well established now
�24�. However, the depth of the profile is a matter of debates
�24�. It was shown in our previous works �24,25� that the
profiles obtained in MD simulations could be approximated
by the inverted Gaussian curve

U0�x� = − A exp�x2/s2� + x�/L , �43�

where A is the depth of the single-ion energy profile; s is the
half-width of this profile. The second term describes the
transmembrane electrostatic potential in the linear approxi-
mation �see Sec. III for the rationale�.

The ion-ion electrostatic interactions in the selectivity fil-
ter of real channel are screened significantly by the water
molecules, which reside between the ions, and the pore
walls. Although the details of this screening can be very
complex, it is obvious that the screening is strongly distance-
dependent and cannot be described by a uniform dielectric
constant. In our model the ion-ion interactions are approxi-
mated by the shielded Coulomb interaction

0 L-L x

U0(x)

OutIn

FIG. 2. Relationship between the model and the real structure of
KcsA channel. The channel is shown in cartoon representation. Two
out of four subunits are shown for clarity.
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FIG. 3. Functions �a� v and �b� � �normalized� for n=2, c1

=10−4 Å−1, c2=0 Å−1, A=43.0 kBT, d=3.0 Å, and �=0 mV. The
function � is extremely sharp �note the log scale�, while the func-
tion v is very smooth and monotonous. Coordinates x1 and x2 are in
Å.
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where d is the shielding constant; b is the constant, which
converts the electrostatic energy to the kBT units. This inter-
action should be considered as the simplest reasonable ap-
proximation of the real ion-ion interaction. The empirical
constant d allows us to vary the amount of screening in the
selectivity filter.

The values of empirical constants are b=566.2, s=9 Å,
and L=20 Å �24,25�. Free parameters A and d are varied. It
is established in experiments and simulations that the selec-
tivity filter of the KcsA channel contains 2 or 3 ions in physi-
ological conditions �1,3,28�. Following these evidence the
configurations up to M =4 were considered to cover the
whole range of possible channel occupancies. As it is said in
the Formulation, the “concentrations” c1 and c2 are in 1 /Å
units. In order to relate them to real concentrations c1� and c2�
the cross sections of the channel boundaries S and S2 should
be known �see Eq. �1��. In addition, in the case of our model
of the KcsA channel c2� is not the concentration in the intra-
cellular solution, but that in the so-called central cavity of the
channel. Finding the exact relations between c1 and c2 and
real concentrations is not in the scope of this work.

1. Distribution functions v and �

Figure 3 shows the distribution functions v and � in the
two-dimensional case �n=2�. It is clearly seen that the func-
tion v is monotonous in both coordinates and very smooth.
In contrast, the function � is extremely fast changing �note
the log scale�. This difference demonstrates the advantage of
computing smooth function v numerically, which allows us
to avoid instabilities and minimize numerical errors.

2. Distribution of the particle density for different occupancy
states

Figure 4 shows the distributions of the ionic density for
different occupancy states and the weighted steady state dis-

tribution. It is clearly seen that the distributions have the
number of peaks, which corresponds to the number of ions
for occupancies n=1,2 ,3. For the occupancy n=4 there are
three peaks of the particle density inside the channel and a
substantial density near the ends of the channel. This means
that the energy well in the channel �A=43 kBT� is too shal-
low to accommodate four ions, thus the excessive ion is lo-
cated near one of the vestibules. Indeed, the weight w4 of the
four-ion configuration in this case is negligible. The
weighted density is formed mainly by the configurations
with 2 and 3 ions. Since the mean number of ions is 2.08 the
state n=2 dominates in the weighted density.

It is clear that the shape of the weighted density depends
strongly on the weights of particular configurations and can
be different for different parameter values. The distributions
shown in Fig. 4 are in fact equilibrium distributions �the
membrane potential is zero and the concentrations are equal�,
however the weighted distribution can only be obtained
when the probabilities of all occupancy states are computed.
In nonequilibrium conditions the distributions become asym-
metric and the positions and shapes of the maxima change,
however the qualitative picture remains the same.

3. Barrierless conduction

The distinctive feature of the KcsA channel, which was
revealed in the MD simulations, is so-called knock-on
barrier-less conduction. The occupancy states with 2 and 3
ions in the selectivity filter of a real channel have almost
identical energies. The filter contains 2 ions most of the time.
When the third ion enters the filter, the two ions move in a
concerted way forming the triple occupancy state. Then the
ion from the other side of the filter moves toward the end and
escapes to opposite solution restoring the state with double
occupancy. The whole process is almost isoenergetic, thus
the current in this regime reaches the maximum. It was
shown in our previous work �24� that the barrier-less conduc-
tion is a quite general mechanism, which could be observed
in very simplified models. Here we studied it using our
theory. Taking into account simplified nature of the model
used here the results should not be directly related to real
channel. However qualitative comparison of general physical
mechanisms is possible and shows that our theory is able to
describe fundamental physical principles of diffusion in the
narrow pores.

We computed the current and the mean occupancy in the
channel varying the well depth A from 1 to 79 kBT and the
shielding constant d from 1.5 to 10 Å. The results are shown
in Fig. 5. It is clearly seen that the current depends dramati-
cally on the parameters. In general, the current decreases
with the increase of the well depth and the shielding. There
are three well-defined ridges of large current, which look like
“fingers” in the contour plot �Fig. 3�a��. The current in the
“valleys” between the ridges is much smaller.

The mean occupancy increases with the increase of A and
decrease of d, which allows more ions to reside in the chan-
nel. This increase is stepwise. There are four well-defined
step-shaped plateaus, which correspond to nmean=1,2 ,3 ,4,
respectively, �Fig. 3�b��. The transitions between the plateaus
are rather sharp, which means that the occupancy changes
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FIG. 4. The distribution of ionic density in different occupancy
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rameters are c1=c2=10−4 Å−1, A=43.0 kBT, and d=3.0 Å. Mean
occupancy of the channel is nmean=2.08.
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abruptly in a narrow domain of parameters. Comparison of
Figs. 5�a� and 5�b� shows that the transitions between the
states with different occupancy roughly correspond to the
ridges of maximal current. Figure 5�c� shows this correlation
in details. The isolines of the mean occupancy are parallel to
the ridges of maximal current. The isolines, which corre-
spond to the highest points of the ridges are nmean=1.15,
2.15, and 3.15, respectively. These isolines match the ridges
extremely well, which can be explained as follows. The
maximal current is observed when n ions reside in the chan-
nel most of the time and the n+1 ion comes to facilitate the
knock-on conduction. This is only possible if the probability
of the state with n+1 ions is small enough. Indeed, the mean

occupancy of, say, 2.5 means that the third ion enters the
channel and remains there for a long time. In this case the
current would necessarily be small. At the same time the n
+1th ion should enter the channel sufficiently often to main-
tain a large current. The interplay of these two factors lead to
some optimal mean occupancy of the channel, which appears
to be 0.15 larger than the corresponding dominant number of
ions in the channel for given parameters.

These results are consistent with the results of Brownian
dynamics simulations from our previous work �25� and con-
firm the validity of our theory.

4. Current-voltage dependence

The current-voltage dependencies of the model pore in the
case of equal concentrations c1 and c2 are shown in Fig. 6.

The possible difference between our results and these ex-
perimental findings is explained by the fact, that we model
only the selectivity filter of the channel in very simplified
way, while the shape of the current-voltage relationship is
likely to depend on the other parts of the real channel. Par-
ticularly, existence of the energy barriers, which are absent in
our simple model, may change the shape of the current-
voltage relationships dramatically.

5. Concentration dependencies

The concentration dependencies of the mean occupancy
and the occupancy probabilities wn are shown in Fig. 7. The
zero occupancy can only be reached for zero concentrations,
which is never possible in real system. The single occupancy
dominates for very small concentrations up to c=10−10. With
the further increase in concentration the double occupancy
becomes dominant. It is interesting to note that the double
occupancy dominates in a very broad range of concentrations
�from c=10−9 to c=10−4�. This correlates very well with the
experimentally determined double occupancy of the selectiv-
ity filter of the KcsA channel in a broad range of conditions.
The triple occupancy dominates for still larger concentra-
tions but in a much more narrow domain. Finally, the prob-
ability of the state with four ions in the channel becomes
significant for extremely large concentrations, which are un-
likely to be observed in real system.
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III. DISCUSSION

The problem of diffusion of multiple strongly interacting
particles in the channels in nonequilibrium conditions is
rarely considered analytically. If such problem arise in prac-
tice it is usually addressed by direct numerical simulation of
motion of particles �numerical solution of the motion equa-
tions�. The examples of this approach are the molecular dy-
namics and Brownian dynamics simulations of diffusion of
water and ions in narrow pores �4,29� and biological ion
channels �6,9,30�. Such simulations become defacto standard
for the systems with multiparticle diffusion. They provide
significant insight into the functioning of the ion channels.
However, they cannot substitute the robust analytical theory
in terms of understanding the fundamental physical phenom-
ena in narrow pores with single-file diffusion. Such theory
can serve as a solid basis for comparison and evaluation of
various simulation techniques and can reduce the computa-
tional burden dramatically in the cases when atomistic de-
tails are not important.

In this work we developed an analytical theory of the
multiparticle single-file diffusion in the external potential in
nonequilibrium conditions. The theory is constructed in a
bottom-up manner from the very basic principles of statisti-
cal physics and probability theory. The unique feature of our
approach is that we take into account the fluctuations of the
number of particles in the system due to the exchange with
external reservoirs. This is vital because the number of par-
ticles in nanopores is usually very small �of order of unity�,
therefore each exchange event changes the system dramati-
cally. Our theory is mainly targeted to such systems with a
small number of particles. Although it can be used for any
number of particles, various mean-field approaches may be
simpler and computationally more efficient if the number of
particles is large.

The exchange of particles between a one-dimensional
pore and three-dimensional reservoirs is rather hard to
model. There are some transition regions �the vestibules� at
the ends of real pores where the motion of particles changes
gradually from one-dimensional to three-dimensional and the
interactions between the particles decrease. Modeling of the
vestibules requires additional parameters, which are hard to

justify in the general theory. That is why we used the sim-
plest model of “sharp” channel boundaries �without explicit
vestibules�. The correlations between the particles in the
channel and the particle, which escapes beyond the bound-
ary, are lost immediately in this model. This assumption is a
key point of our theory. It is definitely an oversimplification;
however, it allows to build an elegant and tractable theory
without any additional assumptions about the pore vestibules
and the details of the particle exchange events. This puts our
theory apart of other similar works, where the exchange
events at the pore boundary are described using either un-
known microscopic kinetic constants or explicit models of
the vestibules. In term of the general theoretical framework
our single controllable assumption about the loss of correla-
tion at the boundary is preferable in comparison to the intro-
duction of unknown adjustable parameters, which depend on
multiple and uncontrollable assumptions about the pore ves-
tibules. Explicit model of the vestibules can also be incorpo-
rated into our framework if necessary �see Appendix B�;
however, detailed analysis of this possibility is beyond the
scope of the current work.

Our theoretical framework could be subdivided into two
parts. The first part is the statistical physics derivations,
which result in expressions �12�, �20�, and �21�. These ex-
pressions allow us to determine any time-dependent macro-
scopic characteristic of the channel if the concentrations c1
and c2, the membrane potential � and the distribution func-
tions ��n� are known. According to Eq. �20�, any macro-
scopic property of the channel can be obtained by averaging
the corresponding property over all possible occupancy
states. The probabilities of the occupancy states in our theory
are computed using the same hierarchical system of the
Fokker-Plank equations for ��n� Eq. �34�, which is used to
compute all other macroscopic parameters of the system. No
additional parameters are needed. This is in contrast to the
works �19–21�, where the probabilities of the occupancy
states depend on additional kinetic parameters at the channel
boundaries. Our approach of subdividing the general distri-
bution function into the weighted terms, which correspond to
different occupancy states, is conceptually similar to the av-
eraging over occupancy states in the works �22,23�. In con-
trast to these works we generalized this approach to the non-
equilibrium system.

The second part of the theory is rather independent from
the first one. In this part the n-particle distribution functions
��n� are found from dynamic equations, which are trans-
formed to a hierarchical system of Fokker-Planck Eq. �34�.
This system is similar �but not identical� to the systems ob-
tained in �14� or �17�. In contrast to these works, there are no
additional terms containing higher order functions ��n+1� in
the equation for ��n�. Thus, Eq. �34� is not coupled explicitly.
The only way of coupling is the hierarchical set of boundary
conditions �Eq. �6��. These boundary conditions are very
simple and natural—the solution of the n-dimensional equa-
tion serves as a boundary condition for the next n+1 dimen-
sional equation. In contrast to �14,19� there are no kinetic
parameters of the particle exchange events in the boundary
conditions. This greatly simplifies the equations and elimi-
nates adjustable parameters, which are hard to estimate.

The assumption of the “sharp” boundary allows writing
continual Eq. �34� immediately instead of deriving them
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from the microscopic transition rate schemes �which should
be done separately for each channel occupancy �14��. Such
schemes become very complex already for three particles in
the pore �14�, while our equations are written in general form
for any number of particles. In contrast to �17� our system of
equation is closed. The number of equations in the system is
equal to the maximal number of particles M, which can re-
side in the pore. This number is always limited by the physi-
cal length of the pore and the particle-particle repulsion in
the sense that the probability of the occupancy of the state
M +1 is negligible.

We show that the problem of finding ��n� could be re-
duced to a hierarchical system of simple partial differential
equations of increasing dimensionality in the steady state.
This system can be solved numerically by various tech-
niques, which should be chosen taking into account the spe-
cific features of the studied system. The numerical method
used to solve this system is designed with arbitrary dimen-
sionality of equations and numerical efficiency in mind. Spe-
cific features of the equations prevent us from using standard
numerical algorithms with known convergence properties.
The algorithm used in this work is a modification of the
multigrid technique adapted for the optimization problem,
which is equivalent to our equations. It is fast and stable;
however, its precision and convergence properties are uncer-
tain. Analysis of the latter is not in the scope of this work. No
quantitative comparison with experimental data is made in
this work; thus, this uncertainty is acceptable for us. More
robust computational techniques will be developed in the
future.

It is shown that such steady state macroscopic character-
istics of the channel as the current and the occupancy prob-
abilities are analytical rational functions of concentrations.
The coefficients of these functions could be easily computed
numerically. Thus, the concentration dependencies could be
obtained in a wide range of parameters at low computational
cost.

The single-particle energy profile U0 is an important
quantity in our theory. U0 is an effective �free� energy of the
particle at certain position of the pore caused by the interac-
tion of the particle with the pore wall. The permeating par-
ticles interact with the pore wall and cause polarization and
rearrangements in its structure. These changes, in turn, lead
to the changes of the energy profile for permeating particles.
The details of this complex mutual influence depend on the
characteristic time of the particle passage through the pore �
and the characteristic times of structural relaxations in the
pore wall. If all motions of the pore wall relax faster then �,
then the structure of the pore wall and the particle density in
the pore become self-consistent. In this case U0 accounts for
this self-consistency in the mean-field-like manner. All self-
consistent rearrangements of the structure, which follow the
passage of the particle are averaged in U0 �the average par-
ticle moves in the effective mean-field potential U0�. Thus, it
is possible to say that the pore wall is effectively “rigid” �U0
does not change in time in the steady state� if there are no
motions in the pore wall with the characteristic times larger
then �.

U0 is also averaged over local motions of the pore wall
independent on the interaction with the permeating particles,

which are faster then �. It also incorporates the effect of the
external electric field and other external conditions on the
pore structure. The single-particle energy profile is not “mi-
croscopic” quantity but a kind of effective mean-field poten-
tial. Such averaged nature of U0 allows computing it in MD
simulations of real channels �30�.

It is obvious that U0 can depend on the pore occupancy
and external conditions, so, strictly speaking, the single-
particle energy profile should be written as U0

�n��xi ,� ,c1 ,c2�.
However, in this work we assume that U0 is independent on
the channel occupancy and external conditions in the sake of
simplicity. Such dependence could be introduced trivially by
writing U0

�n��xi ,� ,c1 ,c2� instead of U0�xi� in all correspond-
ing formulas. In this case U0 should be computed for each
value of the external parameters and each pore occupancy by
means of, i.e., MD simulations.

Description of the transmembrane electrostatic potential is
one of the most challenging issues in the ion channel mod-
eling. In principle our theory is not limited by any particular
way of computing electrostatic potential. The potential
Un�x� ,�� in Eq. �32� may incorporate any approach of evalu-
ating electrostatic interactions such as explicit solution of the
Poisson equations in the pore. However, simplified model of
electrostatic interactions is often desirable because of either
prohibitively large computational intensity of solving the
Poisson equations or the need of simple analytical formulas.
The simplest and widely used Goldman approximation pre-
sumes that the transmembrane potential drops linearly across
the pore. It is definitely an oversimplification if all electro-
static interactions in the pore are described by the Goldman
approximation. However, this is not the case in our theory.

Let us consider the electrostatic potential E acting on the
individual ion in the pore. This potential for the ion i could
be written as

Ei = Eion−ion + Eenv−ion + Edir, �44�

where Eion−ion is the potential caused by all other ions in the
pore; Edir is the “direct” transmembrane potential, which
would act on the ion in the absence of other charges and
polarizable environment; Eenv−ion is the electrostatic potential
caused by all other charges in the system except the ions in
the pore and the polarizable environment. Eion−ion is included
into the particle-particle interactions V in Eq. �33�; thus,
Eion−ion=� j�i

n V�xi−xj�, where n is the number of ions in the
pore. It is obvious that in the absence of charges and polar-
ization effects the transmembrane potential drops linearly,
thus Edir is described perfectly by the Goldman approxima-
tion Edir�x�=xi� /L. Eenv−ion includes the influence of the
static charges in the pore wall, the changes in the channel
structure caused by the transmembrane potential � and vari-
ous polarization effects. According to the definition given
above the contributions, which constitute Eenv−ion are par-
tially included into U0 in the self-consistent manner, thus,
Eenv−ion=U0�xi ,��+Ecorr, where Ecorr is the correction,
which cannot be described by the self-consistent mean-field
potential U0. Substituting corresponding terms into Eq. �44�
we get
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Ei = U0�xi,�� + �
j�i

n

V�xi − xj� + xi�/L + Ecorr.

The linear term could be incorporated into U0 as it is done in
Eq. �43� for convenience.

If Ecorr is small, then total electrostatic potential is de-
scribed exhaustively by V, U0 and.the linear Goldman term,
which describes direct influence of the transmembrane po-
tential on the ion.

Thus, the Goldman approximation is valid for the part of
the electrostatic potential, which is not covered explicitly by
V and U0. The quality of this approximation depends on Ecorr
�approximation becomes exact if Ecorr is negligible�. The
magnitude of Ecorr should be estimated for each particular
system.

Our theory was applied to the simplified model of the
narrow pore, which was inspired by a real object �the selec-
tivity filter of KcsA potassium channel�. We have obtained
macroscopic properties of this model channel �current and
mean occupancy� in a wide range of model parameters. Pre-
dictions of our theory are consistent with the results of our
previous works where the properties of the channel where
computed by the Brownian dynamics simulations �25�. Al-
though the model of the channel used in this work is very
simplified, it provides some insights into the physical prin-
ciples of the barrier-less conduction mechanism, which is
postulated for real channels. It is shown that the knock-on
conduction is possible if the weight of the occupancy state
with n+1 ions in the channel containing n ions most of time
is �0.15 �for concentrations c1=c2=10−4 Å−1�. This value is
a compromise between the large number of permeation
events and the small residence time of the n+1 ion in the
channel during each of these events. It is remarkable that the
weight of the n+1 occupancy state is the same for all
“ridges” of current, which correspond to predominant occu-
pancies n=1,2 ,3 �Fig. 5�c��.

The concentration dependence of the mean channel occu-
pancy show that there are steps of constant occupancy cor-
responding to n=1,2 ,3. The width of the steps depends on
the parameters of the single-ion energy profile. In the case of
parameters, which are closest to the selectivity filter of a real
KcsA channel �d=3 Å, A=43 kBT�, the double occupancy
dominates in a very broad range of concentrations �Fig. 7�.
This correlates very well with the fact that two ions occupy
the selectivity filter in a broad range of conditions including
the crystal structure �1�.

It is necessary to note, however, that the model used in
this work should only be considered as an oversimplified
cartoon of the KcsA selectivity filter, designed for testing
purposes. Thus only very general qualitative comparison of
results with the real channel is possible. The goal of this
work is not to study the KcsA channel or any other particular
object, but to develop and validate the theoretical frame-
work. The similarities in behavior of our model and real
channel show similarities of general physical principles,
which govern their functioning, and should not be overesti-
mated.

A. Limitations

There are several limitations of our theoretical frame-
work. The first and the most important is the “sharp” bound-

ary between the channel and the reservoirs, where all corre-
lations between the particles inside and outside the channel
are lost. As it was shown above, this assumption allows over-
coming numerous conceptual and technical problems, which
were revealed in the previous works in this field. However,
our assumption may be oversimplified for particular systems.
In reality, there is always a transition region �“vestibule”�,
where the interactions of particles change gradually. More
realistic model of the vestibules can be employed for specific
systems. Appendix B describes in details the derivation of
our boundary conditions and shows the way of introducing
more complicated models of the vestibules if such complica-
tion is justified.

Another limitation is the usage of the Langevin �or corre-
sponding Fokker-Plank� equations for modeling the motion
of multiple, strongly interacting particles in the channel. This
implies that the motion of each particle is an independent
Markov process, which is not necessarily the case. In prin-
ciple, any other non-Markovian description can be used to
find the distribution functions � inside the channel if this is
justified by the nature of the studied system.

Finally, the external electrostatic potential is assumed to
be linear inside the channel �the Goldman approximation
�3��. As it is described above the large part of the nonlinear-
ity of the electrostatic potential may be incorporated into the
single-particle energy profile, however the importance of re-
maining effects is uncertain. More robust description should
employ evaluation of the electrostatic field inside the channel
using the Poisson or Poisson-Boltzmann equations.

We do not discuss the limitations of the very simplified
model of the KcsA channel used in this work to evaluate and
to test our theory. This model was discussed in details in our
previous works �24,25�.

B. Perspectives

Although our theory is quite general, it can be extended to
account for some commonly observed special cases of mul-
tiparticle diffusion. Simultaneous diffusion of particles of
several different kinds can be described. Different single-
particle energy profiles U0 and different interactions V could
be assigned for the particles of different kind. Such approach
can be used to model the motion of water molecules and ions
in the ion channels in a more realistic way.

The single-file motion of particles in the channel is not
necessarily strictly one-dimensional. The particles can have
limited mobility in the directions perpendicular to the chan-
nel axis. Such mobility can be different in different parts of
the pore �depending on the pore radius and the properties of
the channel walls�. Such mobility could be taken into ac-
count in several different ways including introduction of the
entropic term to the single-particle energy profile or explicit
introduction of additional degrees of freedom.

The interactions between the channel structure and the
diffusing particles can be considered explicitly �particle-
conformational interaction�. It was shown that such interac-
tion can lead to very interesting self-organization phenomena
�31–35�, thus such studies are very promising.

Our approach can be combined with the MD simulations
of the ion channels. It is well-known that equilibrium distri-
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butions of ions in the ions channels cannot be computed by
MD due to the limited simulation time scale. However, the
single-ion energy profiles can be obtained easily �30�. Appli-
cation of our theory allows obtaining ionic charge density in
the channel from rather short MD simulations. This could
help to bridge the gap between the MD simulations time
scale �hundreds of nanoseconds� and the time scale of the
most interesting channel gating events �milliseconds�.

IV. CONCLUSION

We developed a general analytical framework which de-
scribes single-file diffusion of multiple strongly interacting
particles in nonequilibrium conditions. The model takes into
account the external potential action on the diffusing par-
ticles and the fluctuations of the number of particles due to
their exchange with external reservoirs. The model is con-
structed in a bottom-up manner from the very basic prin-
ciples of statistical physics and probability theory. It is
shown that the problem can be reduced to a hierarchical sys-
tem of elliptic partial differential equations of increasing di-
mensionality, which can be solved numerically. Our frame-
work allows us to compute any macroscopic characteristics
of the single-file multiparticle diffusion, including the current
and the occupancy probabilities. It is shown that the occu-
pancy probabilities and the current are rational functions of
external concentrations.

The theory is tested on a model of the narrow pore in-
spired by the selectivity filter of biological ion channel. The
macroscopic characteristics of the model channel are ob-
tained in a wide range of parameters. Obtained data correlate
very well with the data of earlier studies performed on the
same model, which serves as a validation of our theoretical
framework.
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APPENDIX A: ANALYTICAL CONCENTRATION
DEPENDENCIES IN THE STEADY STATE

In this appendix the analytical concentration dependencies
of the steady state channel properties are obtained. It is also
shown that the function ��n� is a homogeneous function of
degree n for c1,2 in the steady state.

In equilibrium r1=r2=r and �n�x1 , . . . ,xn�=rn, according
to Eq. �37�. Let us determine the dependence of
vn�x1 , . . . ,xn� on r1,2 in nonequilibrium conditions using the
Green’s function formalism. Let us note that the operator R
=�i=1

n �
�xi

�e−Un�x1,. . .,xn� �
�xi

� in Eq. �36� is a linear Hermitian op-
erator. The solution of the Dirichlet problem �39�
Rvn�x1 , . . . ,xn�=0 with the boundary conditions �Eq. �37�� is
�36�:

vn�x� = r1�
�x1=−L�

Gn
�−1��x,�1�vn−1��1�d�1

+ r2�
�xn=L�

Gn
�+1��x;�2�vn−1��2�d�2, �A1�

where Gn
�1��x ;�� are Green functions of the second kind

defined as

Gn
�−1��x,�1� = �−

�Q�x,x��
�e�−� �

x�=�−L,�1�

and

Gn
�+1��x,�2� = �−

�Q�x,x��
�e�+� �

x�=�L,�2�
,

where e��� are the normals to hyperplains x1=−L and xn=L,
respectively; Q�x ,x�� is the Green function of the first kind,
which satisfy the equation RQ�x ,x��=��x−x��; �1
= �x2 , . . . ,xn�, �2= �x1 , . . . ,xn−1�.

If r1=r2 then

�
�x1=−L�

Gn
�−1��x,�1�d�1 + �

�xn=L�
Gn

�+1��x,�2�d�2 = 1.

Applying Eq. �A1� recursively for n−1, n−2, . . . ,3 ,2 and
substituting expression for v1�x� we obtain the polynomial
dependence on r1,2

v�n��x� = �
k=0

n

gk
�n��x�r1

kr2
n−k, �A2�

where

gk
�n��x� = �

i1+i2+. . .+in=n−2k
i1,. . .,in=�1 ��x1=−L�d�1, . . . ,d�nGn

�in��x,�n�

�Gn−1
�in−1���n,�n−1� · . . . · G1

�i1���2,�1�

is independent of r1,2,

�
k=0

n

gk
�n��x� = 1. �A3�

Using Eq. �A2� one can write the functions � and p as poly-
nomials in r1,2

��n��x� = e−Un�x��
k=0

n

gk
�n��x�r1

n−kr2
k , �A4�

p�n� = �
k=0

n

ak
�n�r1

n−kr2
k , �A5�

where ak
�n�=�−L

L dx1 , . . . ,dxne−Un�x�gk
�n��x�.

Thus the function ��n� is a homogeneous function of de-
gree n for r1,2 �or c1,2�. As a result arbitrary coefficient of
chemical activity � could be retained in the theory starting
from formula �4� but only in the steady state. This coefficient
will vanish in the subsequent transformations, however we
do not show this here.
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APPENDIX B: BOUNDARY CONDITIONS OF EQ. (34)

In this appendix the boundary conditions �Eq. �6�� for Eq.
�34� are derived from explicit description of the channel ves-
tibules �transition regions near the ends of the channel�. It is
shown which physical approximations lead to the boundary
conditions �Eq. �6�� if they are not treated as assumption. It is
also shown that n-dimensional Eq. �34� reduces to the n−1
dimensional equation of the same form �without any addi-
tional terms� if one of the particles reaches the channel
boundary.

Let us consider the case n=2 in the sake of simplicity.
There are transition regions �channel vestibules� of length l
between the channel and the reservoirs, which extend from
−L− l to −L and from L to L+ l, respectively. The vestibules
correspond to the areas G−1 and G+1 in the main region of the
configurational space �Fig. 8�. In the region G−1 the first ion
is located in the left vestibule while the second ion resides
inside the channel. In the region G+1 the second ion is lo-
cated in the right vestibule while the first ion resides inside
the channel.

Relaxation of any fluctuation in the reservoirs should be
much faster than that inside the channel �the Boltzmann dis-
tribution is maintained inside the reservoirs regardless of any
exchange events between the channel and the reservoirs�.
This means that effective diffusion coefficient in the reser-
voirs in much larger than that inside the channel. We assume
that this is also true in the transition regions and effective
diffusion coefficient in G−1 and G+1 is

D� � D . �B1�

It is necessary to emphasize that effective diffusion coeffi-
cient D� is computed as a one-dimensional property �by anal-
ogy with D�, while the vestibules are essentially three dimen-
sional. Thus there is no contradiction between Eq. �50� and
the fact that real three dimensional diffusion coefficient in
the bulk solution and in the narrow pore could be of the same
order of magnitude.

We further assume that U0�x��0 in G−1 and G+1. This
means that the channel structure does not influence the mo-
tion of ions in the vestibules significantly. If this is not so, the
vestibules should be shifted further toward bulk solutions.

Under these assumptions two-dimensional Eq. �34� in all
regions reads as

���2��x1,x2;t�
�t

= D�x1�
�

�x1
� �U2�x1,x2�

�x1
��2� +

���2�

�x1
�

+ D�x2�
�

�x2
� �U2�x1,x2�

�x2
��2� +

���2�

�x2
�
�B2�

where

D�xi� = �D,xi � �− L,L�
D� � D,xi � �− �L + l�,− L� � �L,L + l� � .

The distribution function and the normal component of the
flux should be continuous at the boundaries between the
channel and the vestibules �18�; thus,

��2��x1,x2;t�
x1,2=��L−0� = ��2��x1,x2;t�
x1,2=��L+0� �B3�

− D�� �U2�x1,x2�
�x1,2

��2��x1,x2;t� +
���2��x1,x2;t�

�x1,2
��

��L−0�

=�− D�
���2��x1,x2;t�

�x1,2
�

��L+0�
�B4�

Taking into account Eq. �B1� the distribution function in the
region G+1 could be written in adiabatic approximation as
�2�x1 ,x2 ; t���+1�x2 ; t��+1

�1��x1 ; t�, where �+1�x2 ; t� is the dis-
tribution function of the second particle, which is located in
the right vestibule. �+1�x2 ; t� is in the local steady state for
any position of the slowly moving first particle; thus, two
dimensional Fokker-Plank Eq. �B2�transforms to two inde-
pendent equations for �+1�x2 ; t� and �+1

�1��x1 ; t�. The relax-
ation of �+1�x2 ; t� is fast, so only the local steady state value
�+1

����x2 ; t� is of interest. Taking into account U0�x��0 in G+1
we get

�+1
����x2;t� = c2 − ��+1

�1��L − 0,t� − c2�
x2 − L − l

l
,

x2 � �L,L + l� .

It is clear that

� ��+1�x2;t�
�x2

�
x2=L+0

=
��+1

�1��L − 0,t� − c2�
l

�B5�

is independent of x2.
The equation for slowly changing function �+1

�1��x1 ; t� is

��+1
�1��x1;t�
�t

= D
�

�x1
� �U0�x1�

�x1
�+1

�1��x1;t� +
��+1

�1��x1;t�
�x1

� .

�B6�

According to Eq. �B3�,

�2�x1,x2;t�
x2=L−0 = �+1
�1��x1;t� · �+1

����x2;t�
x2=L+0 �B7�

at the channel boundary. Substituting Eq. �B5� into Eq. �B4�
yields

G2 D

G+1

G-1

-L L L+l x1-L-l

2 1 2( , )x xφ

D D′ >>
x2

FIG. 8. The scheme of transition regions for Appendix B.
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− D�� �U2�x1,x2�
�x2

��2��x1,x2;t� +
���2��x1,x2;t�

�x2
��

x2=L−0

=�− D�
��+1�x2;t�

�x2
�

x2=L+0
· �+1

�1��x1;t�

= −
D�

l
��+1�L + 0,t� − c2��+1

�1��x1;t� .

The left-hand side of this expression is independent on D�,
thus in the limit D�→� �+1

����L+0, t�→c2 to ensure that the
right hand side is also independent on D�. According to Eq.
�B7� this yields ��2��x1 ,x2 ; t� 
x2=L−0=�+1

�1��x1 ; t� ·c2. The same
considerations apply to the left boundary of the channel, thus
��2��x1 ,x2 ; t� 
xi=L=c1,2 ·�1

�1� �x1 ; t� if D�→�.
Let us write the general distribution function of a single

particle inside the channel at point x, while other particle is
located in one of the vestibules as

��1��x ; t�=�+1
�1��x ; t�+�−1

�1��x ; t�. This function, Eq. �B6� for
the region G+1 and the equation for the region G−1 analogous

to Eq.�B6� yields the equation for the distribution function of
a single particle inside the channel

���1��x;t�
�t

= D
�

�x
� �U1�x�

�x
��1��x;t� +

���1��x;t�
�x

� .

�B8�

The solution of this equation is the boundary condition for
initial Eq. �34� �with two particles inside the channel�

��2��x1,x2;t�
x1,2=L = c2,1 · ��1��x2,1;t� . �B9�

The development presented above is easily generalized to the
case n�2. In general case �B8� transforms to Eq. �34� while
Eq. �B9� transforms to Eq. �6�.

Thus, it is shown that hierarchical boundary conditions
�Eq. �6�� correspond to the situation when effective diffusion
coefficient in the channel vestibules is very large in compari-
son to its value inside the channel. It is also shown that
n-dimensional Eq. �34� transforms to the same n−1 dimen-
sional equation at the channel boundary if Eq. �6� is valid.
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